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process in cases when 
the observer parameters depend on the trajectory of the controlled 
dynamic system is considered. Such a dependence arises, for instance, 
when the measuring device is installed on a controlled moving platform 
(an aircraft) or if its parameters are affected by the dynamically 
varying characteristics of the environment (temperature). It is 
interesting to examine the selection of the trajectory of a dynamic 
system that minimizes the maximum possible estimation error (the size of 
the information set) /l, 2/. In formal terms, this question can be 
reduced to an optimal control problem with a non-smooth functional of a 
special form. Necessary conditions of optimality are given and some 
optimal observation processes are constructed. 

Although the problem considered in this paper may be regarded as an 
infinite-dimensional generalization of some regression experiment design 
problem /3/, the results appear to be new and in a certain sense 
unexpected. Control of the size of the information set was previously 
considered in /4-6/. 

1. Statement 5f the pobtem. The observed signal is given by 

y (t) = a* (t) 8 + E (t), t E [to, Tl (1.1) 

where 0~ R” is an unknown parameter vector, and a (t) E R" is a known vector function 
whose components a" (.) are assumed to be linearly independent and continuous on [to, Tj; the 
unknown scalar disturbances g(t) are bounded, 

Here and henceforth, the asterisk denotes the transpose and i=l, 2, . . . . n. 
For a fixed y(v) the set of vectors 8 that satisfy (l.l), (1.2) is called an 

mation set compatible with the realized signal /2/. In our case, the information set 
ellipsoid 

E (8, P) = {8 E R" : (0 - W)* P (0 - 0’) < 1 - h2} 

6” = P-U, P = P (a (-)) = (aa*> 

(a = <a#>, hz = <ya> - d*P-'d 

(1.2) 

infor- 
is an 

(1.3) 
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The 
quantity 

size of the information ellipsoid 
hz 

E(W, P) is determined by the matrix P and the 

I%, 
which depends on the realized signal. If the estimator is the centre of the 

ellipsoid then the maxims possible estimation errors is identical with the maximum 
eigenvalue of the matrix P-r. 

Remark. The vector 8" is identical with the ordinary least squares estimator for the 
signal (1.1). The spectrum of the matrix P determines the error variance if the disturbances 
are described by stationary stochastic processes /7/. 

In what follows we assume that a (0) is the solution of the linear differential equation 

a' (0 = A it) a 0) -1- B (t) tl it), t :E Ito, Tl, u (to) = a,, (1.4) 

where A (t) and B(t) are continuous (n X h) and (n Y nz) matrices in [t,, TI and system 
(1.4) is completely controllable. As the admissible controls u(.) we choose measurable func- 
tion that satisfy the constraint 

u(-)fzUCfQ"[I,, Tl (1.5) 

Here U is a convex weakly compact set, identified in particular with an ellipsoid in the 
space Azm [to, TI, 

u = {u(.) : <u*nu>< A") (1.6) 

where R(t) is a symmetrical positive definite matrix in it,,, r]. 
We can then consider the following problem. 

ProbZem I + Find an admissible control uO(.) that satisfies the constraint (1.5) and the 
corresponding solution sat.) of Eq.11.4) that minimizes the maximum eigenvalue of the matrix 
f"-'. 

For convenience, we consider in what follows the esuivalent nroblem of maximizino the 
minimum 

2. 
Problem 

eigenvalue of the matrix P. 

Necessary cmnditions of optimdity. Thewem 2.1. Let uO (s), a, (‘) be a solution of 
1, PO = P (a~(.)).. Then there is a symmetrical non-negative definite matrix M such that 

WJ%) = UF;2U <P*Bu> 

P' (9 = --A* (4 P (t) - IMa, (t), t cz b,, Tl, p (T) = 0 

(2.1) 

(2.2) 

The matrix M can be represented in the form 

where & = Jmin (PC) is the minimum eigenvalue of the matrix P,. 
The proof of the theorem is based on standard methods of external problems and uses the 

fact that the functional rp(e(.)) =hmin (P(a(.))) is quasidifferentiable in the sense of /8/. 

CoroZZary 2.2. Let UO(.)? a0 (*) be a solution of Problem 1 and let the set of admissible 
controls U be defined by (1.6). Then 

pu, (t) = R-’ (t) B* (t) p (t), t E [to, Tf, p > 0 (2.4) 

where p(t) is defined by (2.21, (2.3). 
Let I be the identity matrix, m = n, and 

A (t) = 0, R (t) = f, B (t) = I, t Erl: [to, 77, t, = 0 (2.5) 

In what follows, we will always assume that conditions (1.6) and (2.5) are satisfied with 
respect to Problem 1. In this case, Problem 1 has certain symmetry properties that make it 
possible to obtain the solution in analytical form. 

Invariance of the set U and the spectrum of the matrix P relative to orthogonal trans- 
formations leads to the following proposition. 

Lemma 2.1. Let a0 (.) be a solution of Problem 1, and S an arbitrary orthogonal matrix, 
Then Sa,(t) is a solution of the same problem with the vector Sa, substituted for a,, in 

(1.4). 

CoroZZary 2.2. Let aO(.) be a solution of Problem 1 for ug == 0. Then S% (.) is also 

a solution of Problem 1 for any orthogonal matrix S. 

Lemma 2.2. Let a,(.) be a solution of Problem 1, and YO the set of eigenvectors of the 

matrix P, = P (a0 (.)) corresponding to the minimum eigenvalue. Then 
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dim {Y, U {a,}) = n 

Proof. Assume that the lemma is 
?)*a0 = 0, q** = 0, J)E Y*, and therefore 
are thus linearly dependent on [O,Tl 
contradicts the optimality of a,(*). 

not true. Then there exists a vector '1 -+ 0 such that 

by (2.2)-12.4) @a, (f) = 0, t E to, Tl. The components a~'(.) 
and the matrix P, is singular. We can show that this 

Thus, the eigenvalues of the optimal matrix PO, with the possible exception of the maximum 
eigenvalue, are all equal. Geometrically this means that E(W, P,) is an ellipsoid of rev- 

olution . 

Corollary 2.3. If lzo = 0, then P, = &I, ho > 0. 

3. Canstmrct~rtg the sob&ion. Theorem 3.1. The solution a,(.) of Problem 1 can be 
represented in the form 

a, (t) = Sa, (t), a*+ (t) = ci sin (oit + cpi) Ial) 

oiT + 'pi _: l/z (Zki - 1) n 

where ki are natural numbers, and S is an arbitrary orthogonal matrix that satisfies the 
condition Sa, (O)== a,. 

Proof. From (2.21 and (2.4) it follows that in this case 

a," (t) + Ma@(t) = 0, a' (r) = 0 (3.2) 

Since M is a symmetrical non-negative definite matrix, an orthogonal matrix & exists 
such that 

Q*MQ = diag {qa, wz2, . . ., on’) 

Let a, (t) -- Q*% (0. Then from (3.21 we obtain an equation and a boundary condition for 
u; (t). The proof is completed by reference to Lemma 2.1. 

Theorem 3.2. Let a,(-) be a solution of Problem 1 for a0 = 0. Then an orthogonal matrix 
S exists such that (3.1) hold for 'pi = 0 and 

w, = P--I)n 24AaT 
L 2T 9 ci = c, 3 = nn(4na_ 1) 

(3.3) 

Proof. Since a, == 0, we obtain by Theorem 3.1 that the solution of Problem 1 can be 
represented in the form (3.1) and cpi = 0. By (1.6) and Corollary 2.3, we obtain 

((a,i)2) = V&T = h, (3.4) 
(asiu*j) == 0; i f j; X<(U,'~)~) < A2 

Here and henceforth, summation is from i ;= 1 to i =n. 
Hence 

and therefore the maximum eigenvalue h, is attained for oi that satisfy the first relation- 
ship in (3.3). In this case, cl2 = 2h,l T = 2A'l (TX Oi') and we obtain the last two relation- 

ships in (3.3). The theorem is proved. 
For %#O, the determination of c~,o~, and cp; in (3.1) is somewhat more difficult. 

Let 

z>o, h(z) =(&s+--g, i!i(Z) =&-z 

where xi = s(z) is the i-th (in increasing order) non-negative solution of the equation 

xtpx=z (3.5) 
The following lemma is given without proof. 

Lemma 3.1. The equation 

X fi tz) ta - 6i b)) ” O (3.6) 

has a unigue non-negative solution for any a_% 3tan(n-1)l 3. 
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Theorem 3.3. Let 0 < 11 % 11’ < %, x,, -c tiA’1’ / [n”n (n - I)1 and let z,, be the solution of 
Eq.(3.6) for a = 2A2T ill a,,jj”. Then the solution a,(.) of Problem 1 can be represented in the 
form 

Let us outline the proof of the theorem, omitting some elementary but lengthy trans- 
formations. First note that the matrices M and P, commute, Therefore the transformation Q 
in the proof of Theorem 3.1 can be chosen so that it simultaneously diagonalizes P,. By Lemma 
2.2, all the eigenvalues of the matrix P 0, with the possible exception of the maximum eigen- 
value, are equal. 

Therefore, for aei (.) that satisfy the first two equalities in (3.1) we have the last two 
relationships in (3.4) and 

(@*I)"> = h, > h, = ((a*")"), m = 2, 3, . ., II (3.8) 

Moreover, by (2.1), the last inequality in (3.4) may be replaced with an equality. Evalu- 
ating the corresponding integrals, we can show that the second relationship in (3.4) leads to 
the condition 

oi# (J)j. i # i, WiT tg CLIP T = z 

and wiT are identical with the first (in increasing order) non-negative solutions of Eq.(3.5). 
Under the conditions of the theorem, (3.8) also reduces to an equality, and the deter- 

mination of h0, z* Ci involves solving the system of transcendental equations 

ci2T cos2 zi (z) = 2fi (z) h, 

Xct2 co? zi (z) gi (z) = 2T.d2, Zci2 cos* zi (z) = 11 a, II* 

After some transformations, the solution of this system can be represented in the form 
(3.7). 

It is interesting to obtain an expression for the optimal solution when H a,llz = 1~~. In 
this case, z0 = 0, Xi0 = (i - 1) x , and from (3.7) we obtain 

a*1 (t) = cr, .*m (t) = cm cos ((n - 1) n (t/T - 1)) (3.9) 

ZC,~ = cm2 = 2x, / (2n - I), m = 2, 3, . ., n 

In this case, addition of a constant to .*I (t) obviously does not violate the last two 
relationships in (3.4) and does not alter the minimum eigenvalue h, of the matrix P,. The form 
of the optimal solution thus does not change for II alI II2 > %I’ 

Theorem 3.4. For 11 a,II" >- x, the solution of Problem 1 can be represented in the form 
a, (t) = Sa, (t), where S is an orthogonal matrix and a, (t) satisfies relationships (3.9) for 

c12 = I( a,112 - c22 - CQ? - . - c,? = II a, 112 - 2x, (rz - 1) / (2n - 1) 

Remark. As a- +w, the solution z0 of Eq. (3.6) tends to oc+ and zi(zO)- I/,& - l)n. 
Theorems 3.2-3.4 can therefore be reduced to a single proposition. 
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